IL‐6 Regulates Extracellular Matrix Remodeling Associated With Aortic Dilation in a Fibrillin‐1 Hypomorphic mgR/mgR Mouse Model of Severe Marfan Syndrome
نویسندگان
چکیده
BACKGROUND Development of thoracic aortic aneurysms is the most significant clinical phenotype in patients with Marfan syndrome. An inflammatory response has been described in advanced stages of the disease. Because the hallmark of vascular inflammation is local interleukin-6 (IL-6) secretion, we explored the role of this proinflammatory cytokine in the formation of aortic aneurysms and rupture in hypomorphic fibrillin-deficient mice (mgR/mgR). METHODS AND RESULTS MgR/mgR mice developed ascending aortic aneurysms with significant dilation of the ascending aorta by 12 weeks (2.7 ± 0.1 and 1.3 ± 0.1 for mgR/mgR versus wild-type mice, respectively; P<0.001). IL-6 signaling was increased in mgR/mgR aortas measured by increases in IL-6 and SOCS3 mRNA transcripts (P<0.05) and in cytokine secretion of IL-6, MCP-1, and GM-CSF (P<0.05). To investigate the role of IL-6 signaling, we generated mgR homozygous mice with IL-6 deficiency (DKO). The extracellular matrix of mgR/mgR mice showed significant disruption of elastin and the presence of dysregulated collagen deposition in the medial-adventitial border by second harmonic generation multiphoton autofluorescence microscopy. DKO mice exhibited less elastin and collagen degeneration than mgR/mgR mice, which was associated with decreased activity of matrix metalloproteinase-9 and had significantly reduced aortic dilation (1.0 ± 0.1 versus 1.6 ± 0.2 mm change from baseline, DKO versus mgR/mgR, P<0.05) that did not affect rupture and survival. CONCLUSION Activation of IL-6-STAT3 signaling contributes to aneurysmal dilation in mgR/mgR mice through increased MMP-9 activity, aggravating extracellular matrix degradation.
منابع مشابه
Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome.
In Marfan syndrome, mutations of the fibrillin gene (FBN1) lead to aneurysm of the thoracic aorta, making the aortic wall more susceptible to dissection, but the precise sequence of events underlying aneurysm formation is unknown. We used a rodent model of Marfan syndrome, the mgR/mgR mouse (with mgR: hypomorphic FBN1 mutation), which underexpresses FBN1, to distinguish between a defect in the ...
متن کاملAnalysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome
Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse mode...
متن کاملPhenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome.
Marfan syndrome is associated with early death due to aortic aneurysm. The condition is caused by mutations in the gene (FBN1) encoding fibrillin-1, a major constituent of extracellular microfibrils. Prior observations suggested that a deficiency of microfibrils causes failure of elastic fiber assembly during late fetal development. Mice homozygous for a targeted hypomorphic allele (mgR) of Fbn...
متن کاملInduction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment.
BACKGROUND The primary cause of early death in untreated Marfan syndrome (MFS) patients is aortic dilatation and dissection. METHODS AND RESULTS We investigated whether ascending aortic samples from the fibrillin-1-underexpressing mgR mouse model for MFS or a recombinant fibrillin-1 fragment containing an elastin-binding protein (EBP) recognition sequence can act as chemotactic stimuli for ma...
متن کاملLoss of Endothelial Barrier in Marfan Mice (mgR/mgR) Results in Severe Inflammation after Adenoviral Gene Therapy
OBJECTIVES Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs). In this study we performed adenoviral gene transfer of human tissue i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014